ERFC function
Description
Complementary error function. ERFC(x) returns the error function integrated between x and infinity.
$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,\mathrm dt $$
The argument x can be a real number or a matrix. When it is a matrix, the function returns a matrix with the same dimensions and with the ERFC function applied to all elements.
ERFC(x)=1-ERF(x)
Calculator
Graph