# ERFC function

## Description

Complementary error function. ERFC(x) returns the error function integrated between x and infinity.

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,\mathrm dt $$

ERFC(x)=1-ERF(x)

MedCalc

Mail a PDF copy of this page to:

(Your email address will **not** be added to a mailing list)

Complementary error function. ERFC(x) returns the error function integrated between x and infinity.

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,\mathrm dt $$

ERFC(x)=1-ERF(x)