# ERF function

## Description

ERF(x) returns the error function integrated between zero and x.

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_{0}^x e^{-t^2}\,\mathrm dt$$

MedCalc

Mail a PDF copy of this page to:

(Your email address will **not** be added to a mailing list)

ERF(x) returns the error function integrated between zero and x.

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_{0}^x e^{-t^2}\,\mathrm dt$$